Esplorando Il ponderata esponenzialmente Moving volatilità media è la misura più comune del rischio, ma si tratta in diversi sapori. In un precedente articolo, abbiamo mostrato come calcolare semplice volatilità storica. (Per leggere questo articolo, vedere Uso volatilità per valutare i rischi futuri.) Abbiamo usato Googles dati effettivi di prezzo delle azioni al fine di calcolare la volatilità giornaliera sulla base di 30 giorni di dati di stock. In questo articolo, miglioreremo il semplice volatilità e discutere la media mobile esponenziale ponderata (EWMA). Vs. Storico La volatilità implicita In primo luogo, consente di mettere questa metrica in un po 'di prospettiva. Ci sono due approcci: volatilità storica e implicita (o implicite). L'approccio storico presuppone che passato è prologo misuriamo la storia nella speranza che sia predittiva. La volatilità implicita, d'altra parte, ignora la storia si risolve per la volatilità implicita dai prezzi di mercato. Si spera che il mercato conosce meglio e che il prezzo di mercato contiene, anche se implicitamente, una stima di consenso di volatilità. (Per la lettura correlate, vedere gli usi e limiti di volatilità.) Se ci concentriamo solo su tre approcci storici (il alto a sinistra), hanno due punti in comune: Calcolare la serie di rendimenti periodici applicare uno schema di ponderazione In primo luogo, calcolare il ritorno periodico. Questo è in genere una serie di rendimenti giornalieri in cui ogni ritorno è espresso in termini di continuo composte. Per ogni giorno, prendiamo il logaritmo naturale del rapporto tra i prezzi delle azioni (cioè prezzo oggi divisi per prezzo di ieri, e così via). Questo produce una serie di rendimenti giornalieri, da u i u i-m. a seconda di quanti giorni (m giorni) stiamo misurando. Questo ci arriva al secondo passo: E 'qui che i tre approcci differenti. Nel precedente articolo (Utilizzo di volatilità per valutare rischio futuro), abbiamo dimostrato che in un paio di semplificazioni accettabili, la semplice varianza è la media dei rendimenti al quadrato: Si noti che questo riassume ciascuna delle dichiarazioni periodiche, poi divide che totale da parte del numero di giorni o osservazioni (m). Così, la sua realtà solo una media delle dichiarazioni periodiche squadrati. In altre parole, ogni ritorno quadrato viene dato un peso uguale. Quindi, se alfa (a) è un fattore di ponderazione (in particolare, un 1m), quindi un semplice scostamento simile a questa: Il EWMA migliora semplice varianza La debolezza di questo approccio è che tutti i ritorni guadagnano lo stesso peso. Yesterdays (molto recente) di ritorno non ha più influenza sulla varianza rispetto allo scorso mese di ritorno. Questo problema viene risolto utilizzando la media ponderata esponenzialmente movimento (EWMA), in cui i ritorni più recenti hanno un peso maggiore sulla varianza. La media mobile esponenziale ponderata (EWMA) introduce lambda. che è chiamato il parametro smoothing. Lambda deve essere inferiore a uno. In tale condizione, invece di pesi uguali, ogni ritorno quadrato è ponderato con un moltiplicatore come segue: Per esempio, RiskMetrics TM, una società finanziaria gestione del rischio, tende ad usare un lambda di 0,94 o 94. In questo caso, il primo ( più recente) al quadrato ritorno periodico è ponderato in base (1-0,94) (. 94) 0 6. il prossimo ritorno quadrato è semplicemente un lambda-multiplo del peso prima, in questo caso 6 moltiplicato per 94 5.64. E il terzo giorni precedenti peso uguale (1-0,94) (0,94) 2 5.30. Quello sensi esponenziale EWMA: ciascun peso è un moltiplicatore costante (cioè lambda, che deve essere inferiore a uno) della prima peso giorni. Questo assicura una varianza che viene ponderato o sbilanciata verso i dati più recenti. (Per ulteriori informazioni, controllare il foglio di lavoro Excel per Googles volatilità.) La differenza tra semplicemente volatilità e EWMA per Google è indicato di seguito. La volatilità semplice pesa in modo efficace ogni ritorno periodico da 0.196 come mostrato nella colonna O (abbiamo avuto due anni di dati di prezzo delle azioni quotidiane. Cioè 509 rendimenti giornalieri e il 1509 0.196). Ma si noti che Colonna P assegna un peso di 6, poi 5,64, quindi 5.3 e così via. Quello è l'unica differenza tra semplice varianza e EWMA. Ricorda: Dopo sommiamo l'intera serie (in Q colonna) abbiamo la varianza, che è il quadrato della deviazione standard. Se vogliamo la volatilità, abbiamo bisogno di ricordare di prendere la radice quadrata di tale varianza. Che cosa è la differenza di volatilità giornaliera tra la varianza e EWMA in caso Googles suo significativo: La semplice varianza ci ha dato una volatilità giornaliera di 2,4 ma il EWMA ha dato una volatilità giornaliera di soli 1.4 (vedere il foglio di calcolo per i dettagli). A quanto pare, Googles volatilità si stabilì più di recente, pertanto, una semplice variazione potrebbe essere artificialmente alto. Di oggi Variance è una funzione di preavviso Pior giorni Varianza Youll abbiamo bisogno di calcolare una lunga serie di pesi in modo esponenziale in declino. Abbiamo solito facciamo la matematica qui, ma una delle migliori caratteristiche del EWMA è che l'intera serie riduce convenientemente ad una formula ricorsiva: ricorsivo significa che i riferimenti varianza di oggi (cioè è una funzione del giorni prima varianza). È possibile trovare questa formula nel foglio di calcolo anche, e produce lo stesso risultato esatto come il calcolo longhand Dice: varianza di oggi (sotto EWMA) uguale varianza di ieri (ponderato per lambda) più il rendimento di ieri al quadrato (pesato da una lambda meno). Si noti come stiamo solo aggiungendo due termini insieme: ieri varianza ponderata e ieri ponderati, al quadrato di ritorno. Anche così, lambda è il nostro parametro smoothing. Un lambda più alto (ad esempio, come RiskMetrics 94) indica più lento decadimento della serie - in termini relativi, stiamo per avere più punti di dati nella serie e che stanno per cadere più lentamente. D'altra parte, se riduciamo lambda, indichiamo superiore decadimento: i pesi cadere fuori più rapidamente e, come risultato diretto del rapido decadimento, meno punti dati sono usati. (Nel foglio di calcolo, lambda è un ingresso, in modo da poter sperimentare con la sua sensibilità). Riassunto La volatilità è la deviazione standard istantanea di un magazzino e la metrica di rischio più comune. È anche la radice quadrata della varianza. Siamo in grado di misurare la varianza storicamente o implicitamente (volatilità implicita). Quando si misura storicamente, il metodo più semplice è semplice varianza. Ma la debolezza con una semplice varianza è tutti i ritorni ottenere lo stesso peso. Quindi ci troviamo di fronte un classico trade-off: vogliamo sempre più dati ma più dati che abbiamo più il nostro calcolo è diluito da dati lontani (meno rilevanti). La media mobile esponenziale ponderata (EWMA) migliora semplice varianza assegnando pesi alle dichiarazioni periodiche. In questo modo, siamo in grado di utilizzare una dimensione sia grande campione, ma anche dare maggior peso ai rendimenti più recenti. (Per visualizzare un tutorial film su questo argomento, visitare il Bionic Turtle.) Beta è una misura della volatilità o rischio sistematico, di un titolo o di un portafoglio rispetto al mercato nel suo complesso. Un tipo di imposta riscossa sulle plusvalenze sostenute da individui e aziende. Le plusvalenze sono i profitti che un investitore. Un ordine per l'acquisto di un titolo pari o inferiore a un determinato prezzo. Un ordine di acquisto limite consente agli operatori e agli investitori di specificare. Un Internal Revenue Service (IRS) regola che consente per i prelievi senza penalità da un account IRA. La regola prevede che. La prima vendita di azioni da una società privata al pubblico. IPO sono spesso emesse da piccole, le aziende più giovani che cercano la. Rapporto DebtEquity è rapporto debito utilizzato per misurare una leva finanziaria company039s o un rapporto debito utilizzato per misurare un individual. Weighted medie mobili: I principi fondamentali Nel corso degli anni, i tecnici hanno trovato due problemi con la media mobile semplice. Il primo problema è il lasso di tempo della media mobile (MA). La maggior parte degli analisti tecnici ritengono che l'azione dei prezzi. l'apertura o la chiusura del prezzo delle azioni, non è sufficiente su cui dipendere per prevedere correttamente i segnali di acquisto o vendita delle azioni di crossover MAs. Per risolvere questo problema, gli analisti ora assegnare più peso ai dati relativi ai prezzi più recenti utilizzando la media mobile esponenziale livellata (EMA). (Per saperne di più nell'esplorazione esponenziale Pesato media mobile.) Un esempio per esempio, utilizzando un 10-giorni MA, un analista avrebbe preso il prezzo del 10 ° giorno di chiusura e moltiplicare questo numero per 10, il nono giorno per le nove, l'ottavo giorno per otto e così via alla prima della MA. Una volta che il totale è stato determinato, l'analista poi dividere il numero per l'aggiunta dei moltiplicatori. Se si aggiungono i moltiplicatori del 10-day MA esempio, il numero è 55. Questo indicatore è conosciuta come la media mobile linearmente ponderata. (Per la lettura correlata, controllare semplici medie mobili Fai Trends distinguersi.) Molti tecnici sono convinti sostenitori del esponenzialmente lisciato media mobile (EMA). Questo indicatore è stato spiegato in tanti modi diversi che confonde gli studenti e degli investitori. Forse la migliore spiegazione viene da John J. Murphys: Analisi tecnica dei mercati finanziari, (pubblicato dal New York Institute of Finance, 1999): Il modo esponenziale lisciato movimento indirizzi medi sia dei problemi connessi con la media mobile semplice. Innanzitutto, la media esponenziale livellata assegna un peso maggiore ai dati più recenti. Pertanto, è una media mobile ponderata. Ma mentre assegna minore importanza ai dati dei prezzi passati, esso include nel suo calcolo tutti i dati nella vita dello strumento. Inoltre, l'utente può regolare il coefficiente di dare maggiore o minore peso al più recente prezzo giorni, che viene aggiunta ad una percentuale del valore giorni precedente. La somma dei due valori percentuali aggiunge fino a 100. Per esempio, l'ultimo giorni prezzo potrebbe essere assegnato un peso di 10 (.10), che viene aggiunto al giorno precedente peso di 90 (.90). Questo dà l'ultimo giorno 10 del peso totale. Questo sarebbe l'equivalente di una media di 20 giorni, dando l'ultimo giorni prezzo un valore inferiore di 5 (.05). Figura 1: esponenziale Smoothed media mobile È possibile che questo grafico mostra il Nasdaq Composite Index dalla prima settimana di agosto 2000 al 1 ° giugno 2001. Come si può vedere chiaramente, l'EMA, che in questo caso utilizza i dati relativi ai prezzi di chiusura nel corso di un periodo di nove giorni, ha segnali di vendita precisi sul 8 settembre (contrassegnato da un nero freccia verso il basso). Questo era il giorno in cui l'indice rotto sotto il livello 4.000. La seconda freccia nera indica un'altra tappa verso il basso che i tecnici sono stati effettivamente aspettavano. Il Nasdaq non ha potuto generare abbastanza volume e interesse da parte degli investitori al dettaglio per rompere il marchio 3.000. E poi tuffò di nuovo a toccare il fondo a 1619,58 su aprile 4. La fase di rialzo del 12 aprile è contrassegnato da una freccia. Qui l'indice ha chiuso a 1,961.46, e tecnici ha cominciato a vedere i gestori di fondi istituzionali che iniziano a prendere alcuni affari come Cisco, Microsoft e alcuni dei problemi legati all'energia. (Leggi i nostri articoli correlati: Moving Buste media:. Raffinazione uno strumento popolare Trading and Moving Average rimbalzo) Beta è una misura della volatilità o rischio sistematico, di un titolo o di un portafoglio rispetto al mercato nel suo complesso. Un tipo di imposta riscossa sulle plusvalenze sostenute da individui e aziende. Le plusvalenze sono i profitti che un investitore. Un ordine per l'acquisto di un titolo pari o inferiore a un determinato prezzo. Un ordine di acquisto limite consente agli operatori e agli investitori di specificare. Un Internal Revenue Service (IRS) regola che consente per i prelievi senza penalità da un account IRA. La regola prevede che. La prima vendita di azioni da una società privata al pubblico. IPO sono spesso emesse da piccole, le aziende più giovani che cercano la. Rapporto DebtEquity è rapporto debito utilizzato per misurare una leva finanziaria company039s o un rapporto debito utilizzato per misurare un individual. How calcolare medie mobili calibrati in Excel Utilizzando esponenziale di analisi dei dati di Excel per i manichini, strumento 2nd Edition L'esponenziale in Excel calcola il movimento media. Tuttavia, i pesi di livellamento esponenziale i valori inclusi nei calcoli in movimento media in modo che i valori più recenti hanno un effetto maggiore sul calcolo della media e vecchi valori hanno un effetto minore. Questa ponderazione è raggiunto mediante un costante livellamento. Per illustrare come funziona lo strumento esponenziale, supponiamo che you8217re di nuovo guardando i dati di temperatura media giornaliera. Per calcolare medie mobili ponderate con livellamento esponenziale, procedere come segue: Per calcolare una media mobile esponenziale levigata, in primo luogo fare clic sul pulsante di comando dati tab8217s Data Analysis. Quando Excel visualizza la finestra di dialogo Analisi dati, selezionare la voce esponenziale dall'elenco e fare clic su OK. Excel visualizza la finestra di dialogo esponenziale. Identificare i dati. Per identificare i dati per i quali si desidera calcolare una media mobile esponenziale lisciato, fare clic nella casella di testo di input. Quindi individuare il campo di ingresso, sia digitando un indirizzo di intervallo di prospetto o selezionando l'intervallo di prospetto. Se l'intervallo di input include un'etichetta di testo per identificare o descrivere i dati, selezionare la casella di controllo etichette. Fornire la costante di smoothing. Inserire il smoothing valore costante nella casella di testo Damping Factor. Il file Excel suggerisce di utilizzare una costante di smoothing di tra 0,2 e 0,3. Presumibilmente, tuttavia, se you8217re utilizzando questo strumento, si ha le proprie idee su ciò che la costante di smoothing corretta è. (Se you8217re all'oscuro circa la lisciatura costante, forse si shouldn8217t utilizzare questo strumento.) Dillo Excel dove collocare i dati di media mobile esponenziale levigate. Utilizzare la casella di testo Intervallo di output per identificare l'intervallo di prospetto in cui si desidera inserire i dati medi in movimento. Nell'esempio foglio di lavoro, ad esempio, si posiziona i dati medi in movimento nella gamma del foglio di lavoro B2: B10. (Opzionale) Grafico i dati in modo esponenziale levigate. Per tracciare i dati in modo esponenziale levigate, selezionare la casella di controllo Grafico in output. (Opzionale) indicare che si desidera informazioni errore standard calcolato. Per calcolare gli errori standard, selezionare la casella di controllo gli errori standard. luoghi di Excel i valori di errore standard, accanto ai valori medi in movimento in modo esponenziale levigate. Una volta specificato quali lo spostamento delle informazioni media che si desidera calcolato e dove vuoi collocato, fare clic su OK. Excel calcola la media mobile media information. Moving e modelli di livellamento esponenziale Come primo passo nel muoversi oltre i modelli medi, modelli random walk, e modelli di tendenza lineare, i modelli non stagionali e le tendenze possono essere estrapolati utilizzando un modello a media mobile o levigante. L'assunto di base dietro media e modelli di livellamento è che la serie temporale è localmente stazionario con una media lentamente variabile. Quindi, prendiamo una media mobile (locale) per stimare il valore corrente della media e poi utilizzarla come la previsione per il prossimo futuro. Questo può essere considerato come un compromesso tra il modello media e la deriva modello random walk-senza-. La stessa strategia può essere utilizzata per stimare e estrapolare una tendenza locale. Una media mobile è spesso chiamato una versione quotsmoothedquot della serie originale, perché la media a breve termine ha l'effetto di appianare i dossi nella serie originale. Regolando il grado di lisciatura (la larghezza della media mobile), possiamo sperare di colpire un qualche tipo di equilibrio ottimale tra le prestazioni dei modelli medi e random walk. Il tipo più semplice di modello di media è il. Semplice (equamente ponderate) Media mobile: Le previsioni per il valore di Y al tempo t1 che viene fatta al tempo t è pari alla media semplice dei più recenti osservazioni m: (Qui e altrove mi utilizzerà il simbolo 8220Y-hat8221 di stare per una previsione di serie temporali Y fatta quanto prima prima possibile da un dato modello.) Questa media è centrato periodo t - (m1) 2, il che implica che la stima della media locale tenderà a restare indietro il vero valore della media locale circa (m1) 2 periodi. Così, diciamo l'età media dei dati nella media mobile semplice (m1) 2 rispetto al periodo per il quale è calcolata la previsione: questa è la quantità di tempo per cui previsioni tenderanno a restare indietro ruotando punti nei dati . Ad esempio, se si sta una media degli ultimi 5 valori, le previsioni saranno circa 3 periodi in ritardo nel rispondere a punti di svolta. Si noti che se m1, il modello di media mobile semplice (SMA) è equivalente al modello random walk (senza crescita). Se m è molto grande (paragonabile alla lunghezza del periodo di stima), il modello SMA è equivalente al modello medio. Come con qualsiasi parametro di un modello di previsione, è consuetudine per regolare il valore di k per ottenere la migliore quotfitquot ai dati, cioè i più piccoli errori di previsione in media. Ecco un esempio di una serie che sembra mostrare fluttuazioni casuali intorno a una media lentamente variabile. Innanzitutto, proviamo per adattarsi con un modello casuale, che è equivalente a una media mobile semplice di 1 termine: Il modello random walk risponde molto velocemente alle variazioni della serie, ma così facendo raccoglie gran parte del quotnoisequot nel dati (le fluttuazioni casuali) e il quotsignalquot (media locale). Se invece cerchiamo una semplice media mobile di 5 termini, si ottiene un insieme più agevole dall'aspetto delle previsioni: Il 5-termine mobile semplice rese medie in modo significativo gli errori più piccoli rispetto al modello random walk in questo caso. L'età media dei dati di questa previsione è 3 ((51) 2), in modo che tende a ritardo punti di svolta da circa tre periodi. (Per esempio, una flessione sembra essersi verificato in periodo di 21, ma le previsioni non girare intorno fino a diversi periodi più tardi.) Si noti che le previsioni a lungo termine dal modello SMA sono una retta orizzontale, proprio come nel random walk modello. Pertanto, il modello SMA presuppone che vi sia alcuna tendenza nei dati. Tuttavia, mentre le previsioni del modello random walk sono semplicemente uguale all'ultimo valore osservato, le previsioni del modello di SMA sono pari ad una media ponderata dei valori ultimi. I limiti di confidenza calcolato dai Statgraphics per le previsioni a lungo termine della media mobile semplice non ottengono più ampio con l'aumento della previsione all'orizzonte. Questo ovviamente non è corretto Purtroppo, non vi è alcuna teoria statistica di fondo che ci dice come gli intervalli di confidenza deve ampliare per questo modello. Tuttavia, non è troppo difficile da calcolare le stime empiriche dei limiti di confidenza per le previsioni di più lungo orizzonte. Ad esempio, è possibile impostare un foglio di calcolo in cui il modello SMA sarebbe stato utilizzato per prevedere 2 passi avanti, 3 passi avanti, ecc all'interno del campione di dati storici. È quindi possibile calcolare le deviazioni standard campione degli errori in ogni orizzonte di previsione, e quindi la costruzione di intervalli di confidenza per le previsioni a lungo termine aggiungendo e sottraendo multipli della deviazione standard appropriato. Se cerchiamo una media del 9 termine semplice movimento, otteniamo le previsioni ancora più fluide e più di un effetto ritardo: L'età media è ora 5 punti ((91) 2). Se prendiamo una media mobile 19-termine, l'età media aumenta a 10: Si noti che, in effetti, le previsioni sono ora in ritardo punti di svolta da circa 10 periodi. Quale quantità di smoothing è meglio per questa serie Ecco una tabella che mette a confronto le loro statistiche di errore, anche compreso in media 3-termine: Modello C, la media mobile a 5-termine, i rendimenti il valore più basso di RMSE da un piccolo margine su 3 - term e 9 termine medie, e le loro altre statistiche sono quasi identici. Così, tra i modelli con le statistiche di errore molto simili, possiamo scegliere se avremmo preferito un po 'più di risposta o un po' più scorrevolezza nelle previsioni. (Torna a inizio pagina.) Browns semplice esponenziale (media mobile esponenziale ponderata) Il modello a media mobile semplice di cui sopra ha la proprietà indesiderabile che tratta le ultime osservazioni k ugualmente e completamente ignora tutte le osservazioni che precedono. Intuitivamente, dati passati devono essere attualizzati in modo più graduale - per esempio, il più recente osservazione dovrebbe avere un peso poco più di 2 più recente, e la 2 più recente dovrebbe ottenere un po 'più peso che la 3 più recente, e presto. Il modello semplice di livellamento esponenziale (SES) realizza questo. Diamo 945 denotano una constantquot quotsmoothing (un numero compreso tra 0 e 1). Un modo per scrivere il modello è quello di definire una serie L che rappresenta il livello attuale (cioè il valore medio locale) della serie come stimato dai dati fino ad oggi. Il valore di L al momento t è calcolata in modo ricorsivo dal proprio valore precedente in questo modo: Così, il valore livellato corrente è una interpolazione tra il valore livellato precedente e l'osservazione corrente, dove 945 controlla la vicinanza del valore interpolato al più recente osservazione. Le previsioni per il prossimo periodo è semplicemente il valore livellato corrente: Equivalentemente, possiamo esprimere la prossima previsione direttamente in termini di precedenti previsioni e osservazioni precedenti, in una delle seguenti versioni equivalenti. Nella prima versione, la previsione è una interpolazione tra precedente meteorologiche e precedente osservazione: Nella seconda versione, la prossima previsione è ottenuta regolando la previsione precedente nella direzione dell'errore precedente di una quantità frazionaria 945. è l'errore al tempo t. Nella terza versione, la previsione è di un (cioè scontato) media mobile esponenziale ponderata con fattore di sconto 1- 945: La versione di interpolazione della formula di previsione è il più semplice da usare se si implementa il modello su un foglio di calcolo: si inserisce in un singola cellula e contiene i riferimenti di cella che puntano alla previsione precedente, l'osservazione precedente, e la cella in cui è memorizzato il valore di 945. Si noti che se 945 1, il modello SES è equivalente ad un modello random walk (senza crescita). Se 945 0, il modello SES è equivalente al modello medio, assumendo che il primo valore livellato è impostata uguale alla media. (Torna a inizio pagina). L'età media dei dati nelle previsioni semplice esponenziale-levigante è di 1 945 relativo al periodo per il quale è calcolata la previsione. (Questo non dovrebbe essere ovvio, ma può essere facilmente dimostrare valutando una serie infinita.) Quindi, la semplice previsione media mobile tende a restare indietro punti di svolta da circa 1 945 periodi. Ad esempio, quando 945 0.5 il ritardo è di 2 periodi in cui 945 0.2 il ritardo è di 5 periodi in cui 945 0.1 il ritardo è di 10 periodi, e così via. Per una data età media (cioè quantità di ritardo), il semplice livellamento esponenziale (SES) previsione è un po 'superiore alla previsione media mobile semplice (SMA) perché pone relativamente più peso sulla più recente --i. e osservazione. è leggermente più quotresponsivequot ai cambiamenti che si verificano nel recente passato. Per esempio, un modello di SMA con 9 termini e un modello di SES con 945 0,2 entrambi hanno un'età media di 5 per i dati nelle loro previsioni, ma il modello SES mette più peso sugli ultimi 3 valori di quanto non faccia il modello SMA e al contempo doesn8217t interamente 8220forget8221 sui valori più di 9 periodi vecchi, come mostrato in questo grafico: un altro importante vantaggio del modello SES sul modello SMA è che il modello SES utilizza un parametro smoothing che è continuamente variabile, in modo che possa facilmente ottimizzato utilizzando un algoritmo quotsolverquot per minimizzare l'errore quadratico medio. Il valore ottimale di 945 nel modello SES a questa serie risulta essere 0,2961, come illustrato di seguito: L'età media dei dati in questa previsione è 10.2961 3.4 periodi, che è simile a quella di una media 6 termine mobile semplice. Le previsioni a lungo termine dal modello SES sono una linea retta orizzontale. come nel modello SMA e il modello random walk senza crescita. Si noti tuttavia che gli intervalli di confidenza calcolati da Statgraphics ora divergono in modo ragionevole dall'aspetto, e che sono sostanzialmente più stretto gli intervalli di confidenza per il modello random walk. Il modello di SES presuppone che la serie è un po 'predictablequot quotmore di quanto non faccia il modello random walk. Un modello SES è in realtà un caso particolare di un modello ARIMA. così la teoria statistica dei modelli ARIMA fornisce una solida base per il calcolo intervalli di confidenza per il modello SES. In particolare, un modello SES è un modello ARIMA con una differenza nonseasonal, un MA (1) termine, e nessun termine costante. altrimenti noto come un modello quotARIMA (0,1,1) senza constantquot. Il MA (1) coefficiente nel modello ARIMA corrisponde alla quantità 1- 945 nel modello SES. Ad esempio, se si adatta un modello ARIMA (0,1,1) senza costante alla serie analizzate qui, il MA stimato (1) coefficiente risulta essere 0,7029, che è quasi esattamente un meno 0,2961. È possibile aggiungere l'assunzione di una tendenza non-zero costante lineare per un modello SES. Per fare questo, basta specificare un modello ARIMA con una differenza non stagionale e di un (1) termine MA con una costante, cioè un (0,1,1) modello ARIMA con costante. Le previsioni a lungo termine avranno quindi una tendenza che è uguale alla tendenza medio rilevato nel corso dell'intero periodo di stima. Non si può fare questo in collaborazione con destagionalizzazione, perché le opzioni di destagionalizzazione sono disattivati quando il tipo di modello è impostato su ARIMA. Tuttavia, è possibile aggiungere una costante a lungo termine tendenza esponenziale ad un semplice modello di livellamento esponenziale (con o senza regolazione stagionale) utilizzando l'opzione di regolazione inflazione nella procedura di previsione. Il tasso appropriato quotinflationquot (crescita percentuale) per periodo può essere stimato come il coefficiente di pendenza in un modello trend lineare montato i dati in combinazione con una trasformazione logaritmo naturale, oppure può essere basata su altri, informazione indipendente per quanto riguarda le prospettive di crescita a lungo termine . (Ritorna all'inizio pagina.) Browns lineari (cioè doppie) modelli esponenziale La SMA e modelli di SES per scontato che non vi è alcuna tendenza di alcun tipo nei dati (che di solito è OK, o almeno non troppo male per 1- previsioni passo avanti quando i dati sono relativamente rumoroso), e possono essere modificati per includere un trend lineare costante come indicato sopra. Che dire di tendenze a breve termine Se una serie mostra un tasso variabile di crescita o un andamento ciclico che si distingue chiaramente contro il rumore, e se vi è la necessità di prevedere più di 1 periodo a venire, allora la stima di una tendenza locale potrebbe anche essere un problema. Il semplice modello di livellamento esponenziale può essere generalizzata per ottenere un modello lineare di livellamento esponenziale (LES) che calcola le stime locali sia a livello e di tendenza. Il modello di tendenza tempo-variante più semplice è Browns lineare modello di livellamento esponenziale, che utilizza due diverse serie levigato che sono centrate in diversi punti nel tempo. La formula di previsione si basa su un'estrapolazione di una linea attraverso i due centri. (Una versione più sofisticata di questo modello, Holt8217s, è discusso qui di seguito.) La forma algebrica di Brown8217s lineare modello di livellamento esponenziale, come quello del semplice modello di livellamento esponenziale, può essere espresso in una serie di forme diverse ma equivalenti. La forma quotstandardquot di questo modello è di solito espressa come segue: Sia S denotano la serie singolarmente-levigata ottenuta applicando semplice livellamento esponenziale di serie Y. Cioè, il valore di S al periodo t è dato da: (Ricordiamo che, in semplice livellamento esponenziale, questo sarebbe il tempo per Y al periodo t1) Allora che Squot denotano la serie doppiamente levigata ottenuta applicando semplice livellamento esponenziale (utilizzando lo stesso 945) per serie S:. Infine, le previsioni per Y tk. per qualsiasi kgt1, è data da: Questo produce e 1 0 (vale a dire imbrogliare un po ', e lasciare che la prima previsione uguale l'attuale prima osservazione), ed e 2 Y 2 8211 Y 1. dopo di che le previsioni sono generati usando l'equazione di cui sopra. Questo produce gli stessi valori stimati come la formula basata su S e S se questi ultimi sono stati avviati utilizzando S 1 S 1 Y 1. Questa versione del modello è usato nella pagina successiva che illustra una combinazione di livellamento esponenziale con regolazione stagionale. modello Holt8217s lineare esponenziale Brown8217s LES calcola stime locali di livello e l'andamento lisciando i dati recenti, ma il fatto che lo fa con un singolo parametro smoothing pone un vincolo sui modelli di dati che è in grado di adattarsi: il livello e tendenza non sono autorizzati a variare a tassi indipendenti. modello Holt8217s LES risolve questo problema includendo due costanti di lisciatura, uno per il livello e uno per la tendenza. In ogni momento t, come nel modello Brown8217s, il c'è una stima L t del livello locale e una T t stima della tendenza locale. Qui vengono calcolati ricorsivamente dal valore di Y osservata al tempo t e le stime precedenti del livello e l'andamento di due equazioni che si applicano livellamento esponenziale separatamente. Se il livello stimato e tendenza al tempo t-1 sono L t82091 e T t-1. rispettivamente, la previsione per Y tshy che sarebbe stato fatto al tempo t-1 è uguale a L t-1 T t-1. Quando si osserva il valore effettivo, la stima aggiornata del livello è calcolata in modo ricorsivo per interpolazione tra Y tshy e le sue previsioni, L t-1 T t-1, con pesi di 945 e 945. 1- La variazione del livello stimato, vale a dire L t 8209 L t82091. può essere interpretato come una misura rumorosa della tendenza al tempo t. La stima aggiornata del trend viene poi calcolata in modo ricorsivo interpolando tra L t 8209 L t82091 e la stima precedente del trend, T t-1. utilizzando pesi di 946 e 1-946: L'interpretazione del trend-smoothing costante 946 è analoga a quella del livello-levigatura costante 945. Modelli con piccoli valori di 946 assume che la tendenza cambia solo molto lentamente nel tempo, mentre i modelli con grande 946 supporre che sta cambiando più rapidamente. Un modello con un grande 946 ritiene che il lontano futuro è molto incerto, perché gli errori in trend-stima diventano molto importanti quando la previsione più di un periodo avanti. (Torna a inizio pagina.) Il livellamento costanti di 945 e 946 può essere stimato nel modo consueto minimizzando la media errore delle previsioni 1-step-ahead quadrato. Quando questo fatto in Statgraphics, le stime risultano essere 945 0,3048 e 946 0.008. Il valore molto piccolo di 946 significa che il modello assume molto poco cambiamento di tendenza da un periodo all'altro, in modo sostanzialmente questo modello sta cercando di stimare un trend di lungo periodo. Per analogia con la nozione di età media dei dati utilizzati nella stima del livello locale della serie, l'età media dei dati che viene utilizzato per stimare la tendenza locale è proporzionale a 1 946, anche se non esattamente uguale ad esso . In questo caso risulta essere 10,006 125. Questo isn8217t un numero molto preciso in quanto la precisione della stima di 946 isn8217t realmente 3 decimali, ma è dello stesso ordine generale di grandezza della dimensione del campione di 100, così questo modello è una media di più di un bel po 'di storia nella stima del trend. La trama meteo seguente mostra che il modello LES stima un leggermente maggiore tendenza locale alla fine della serie rispetto alla tendenza costante stimata nel modello SEStrend. Inoltre, il valore stimato di 945 è quasi identica a quella ottenuta inserendo il modello SES con o senza tendenza, quindi questo è quasi lo stesso modello. Ora, queste sembrano le previsioni ragionevoli per un modello che dovrebbe essere stimare un trend locale Se si 8220eyeball8221 questa trama, sembra che la tendenza locale si è trasformato in basso alla fine della serie Quello che è successo I parametri di questo modello sono stati stimati minimizzando l'errore quadratico delle previsioni 1-step-ahead, non le previsioni a lungo termine, nel qual caso la tendenza doesn8217t fare un sacco di differenza. Se tutti si sta guardando sono errori 1-step-avanti, non si è visto il quadro più ampio delle tendenze sopra (diciamo) 10 o 20 periodi. Al fine di ottenere questo modello più in sintonia con la nostra bulbo oculare estrapolazione dei dati, siamo in grado di regolare manualmente la tendenza-smoothing costante in modo che utilizzi una base più breve per la stima di tendenza. Ad esempio, se si sceglie di impostare 946 0.1, quindi l'età media dei dati utilizzati nella stima la tendenza locale è di 10 periodi, il che significa che ci sono in media il trend negli ultimi 20 periodi che o giù di lì. Here8217s quello che la trama del tempo si presenta come se impostiamo 946 0.1, mantenendo 945 0.3. Questo sembra intuitivamente ragionevole a questa serie, anche se probabilmente è pericoloso estrapolare questa tendenza eventuali più di 10 periodi in futuro. Che dire le statistiche di errore Ecco un confronto modello per i due modelli sopra indicati, nonché tre modelli SES. Il valore ottimale di 945.per modello SES è di circa 0,3, ma risultati simili (con leggermente più o meno reattività, rispettivamente) sono ottenute con 0,5 e 0,2. exp lineare (A) Holts. levigatura con alfa e beta 0,3048 0.008 (B) Holts exp lineare. levigatura con alpha 0.3 e beta 0.1 (C) livellamento esponenziale semplice con alfa 0,5 (D) livellamento esponenziale semplice con alpha 0.3 (E) livellamento esponenziale semplice con alpha 0.2 Le loro statistiche sono quasi identiche, quindi abbiamo davvero can8217t fare la scelta sulla base di errori di previsione 1-step-avanti all'interno del campione di dati. Dobbiamo ripiegare su altre considerazioni. Se crediamo fermamente che ha senso basare la stima attuale tendenza su quanto è successo negli ultimi 20 periodi o giù di lì, siamo in grado di fare un caso per il modello LES con 945 0,3 e 946 0.1. Se vogliamo essere agnostici sul fatto che vi è una tendenza locale, poi uno dei modelli SES potrebbe essere più facile da spiegare e darebbe anche altre previsioni middle-of-the-road per i prossimi 5 o 10 periodi. (Ritorna all'inizio pagina.) Quale tipo di trend-estrapolazione è meglio: L'evidenza empirica orizzontale o lineare suggerisce che, se sono già stati adeguati i dati (se necessario) per l'inflazione, allora può essere imprudente per estrapolare lineare a breve termine tendenze molto lontano nel futuro. Le tendenze evidenti oggi possono rallentare in futuro, dovuta a cause diverse quali obsolescenza dei prodotti, l'aumento della concorrenza, e flessioni cicliche o periodi di ripresa in un settore. Per questo motivo, semplice livellamento esponenziale spesso si comporta meglio out-of-sample che altrimenti potrebbero essere previsto, nonostante la sua quotnaivequot estrapolazione di tendenza orizzontale. modifiche di tendenza smorzato del modello di livellamento esponenziale lineare sono spesso utilizzati in pratica per introdurre una nota di conservatorismo nelle sue proiezioni di tendenza. Il modello LES smorzata-tendenza può essere implementato come un caso particolare di un modello ARIMA, in particolare, un modello (1,1,2) ARIMA. E 'possibile calcolare gli intervalli di confidenza intorno previsioni a lungo termine prodotte da modelli di livellamento esponenziale, considerandoli come casi speciali di modelli ARIMA. (Attenzione: non tutto il software calcola correttamente intervalli di confidenza per questi modelli.) La larghezza degli intervalli di confidenza dipende (i) l'errore RMS del modello, (ii) il tipo di levigatura (semplice o lineare) (iii) il valore (s) della costante di smoothing (s) e (iv) il numero di periodi avanti si prevedono. In generale, gli intervalli distribuite più veloce come 945 diventa più grande nel modello SES e si propagano molto più velocemente quando lineare piuttosto che semplice lisciatura viene utilizzato. Questo argomento è discusso ulteriormente nella sezione modelli ARIMA delle note. (Torna all'inizio della pagina.)
No comments:
Post a Comment